## The distance transform, erosion and separability

Thursday, November 6th, 2008

David Coeurjolly from the Université de Lyon just gave a presentation here at my department. He discussed, among other things, an algorithm that computes the Euclidean distance transform and is separable. The distance transform is an operation that takes a binary image as input, and writes in each object pixel the distance to the nearest background pixel. All sorts of approximations exist, using various distance measures that approximate the Euclidean distance. Using truly Euclidean distances is rather expensive. However, by making an algorithm that is separable, the computational cost is greatly reduced.

David’s algorithm computes the square distance first along each of the rows of the image, then modifies these distances by doing some operations along the columns. In higher-dimensional images you can just repeat this last step along the other dimensions. The operation to modify these distance values sounded very much like parabolic erosions to me, so I just gave this a try.